On Residually S2 Ideals and Projective Dimension One Modules
نویسنده
چکیده
We prove that certain modules are faithful. This enables us to draw consequences about the reduction number and the integral closure of some classes of ideals.
منابع مشابه
Core of projective dimension one modules
manuscripta mathematica manuscript No. Abstract. The core of a projective dimension one module is computed explicitly in terms of Fitting ideals. In particular, our formula recovers previous work by R. Mohan on integrally closed torsionfree modules over a two-dimensional regular local ring.
متن کاملOn Modules of Finite Projective Dimension
We address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular we derive that in any local ring R of mixed...
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملProjective Dimension and the Singular Locus
For a Noetherian local ring, the prime ideals in the singular locus completely determine the category of finitely generated modules up to direct summands, extensions and syzygies. From this some simple homological criteria are derived for testing whether an arbitrary module has finite projective dimension.
متن کاملProjective maximal submodules of extending regular modules
We show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of Dung and Smith. As another consequen...
متن کامل